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Abstract

We survey how the Tutte polynomial is defined for hyperplane arrange-
ments and how this definition naturally relates to the Tutte polynomial
for graphs. We also include a probabilistic interpretation of the Tutte
polynomial of a hyperplane arrangement, and some interesting computa-
tions.

1 Introduction

From lecture notes in [2] we are familiar with a hyperplane arrangement A
and its characteristic polynomial χA(q). In this report we define the Tutte
Polynomial TA(x, y), and a transformation of it called the coboundary poly-
nomial χA(q, t). For a graph G, definitions of Tutte polynomial TG(x, y) and
coboundary polynomial χG(q, t) exist, and a rank function is also defined on
subsets of the edges. The bijection given in [2] that takes a graph G to AG,
a subarrangement of the braid arrangement in Rn (a graphical arrangement),
identifies edges with hyperplanes, hence suggesting that the two rank functions
are “equal”. We formalise this. Reconciling the definitions of Tutte polynomial
for graphs and arrangements allows us to recover known results in graph theory,
regarding colourings and deletion-contraction.
The recurrence relation for the Tutte polynomial for hyperplane arrangements
can, in fact, be extended to non-graphical arrangements. Moreover, the cobound-
ary polynomial of any hyperplane arrangement can be interpreted as an expec-
tation on χB(q) where B ⊆ A is obtained by removing hyperplanes with inde-
pendent and identical probability.
We also write the coboundary polynomial of En, a generalisation of the braid
arrangement, in terms of ranks of a certain class of graphs.

2 Definitions and examples

2.1 For hyperplane arrangements

rA is the rank of a hyperplane arrangement A.

Definition 2.1. The Tutte Polynomial of a hyperplane arrangement A is :

TA(x, y) =
∑
A⊆B
central

(x− 1)r−rB(y − 1)|B|−rB (1)

where r = rA and the sum varies over all central subarrangements of A.
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Some transformations are used to define another polynomial, equivalent to
the Tutte polynomial but simpler for our computations:

Definition 2.2. The coboundary polynomial of a hyperplane arrangement A
is :

χA(q, t) =
∑
A⊆B
central

qr−rB(t− 1)|B| (2)

By computing for each summand we can verify that :

χA(q, t) = (t− 1)rTA

(q + t− 1

t− 1
, t
)

and

TA(x, y) =
1

(y − 1)r
χA
(
(x− 1)(y − 1), y

)
We now look at two examples of Tutte and coboundary polynomials of arrange-
ments. Note that the intersection over an empty collection is the entire space,
hence the empty subarrangement is always central.

1. A = A2 = Braid1 arrangement in R3 : ∀i, j s.t. 1 ≤ i < j ≤ 3, xi−xj = 0.
r = 2. All subarrangements are central, so the following summands arise
:

• B = A. rB = 2, |B| = 3. (x− 1)0(y − 1)1, q0(t− 1)3

• |B| = 2. There are 3 subarrangements of this type, all symmetrical,
rB = 2. Hence we get : 3(x− 1)0(y − 1)0, 3q0(t− 1)2

• |B| = 1. Also 3 of these, symmetrical cases. We get : 3(x−1)1(y−1)0,
3q1(t− 1)1

• B = ∅. We get (x− 1)2(y − 1)0, q2(t− 1)0

Thus

TA(x, y) = (y − 1) + 3 + 3(x− 1) + (x− 1)2

= y − 1 + 3x+ (x2 − 2x+ 1)

= x2 + x+ y

and

χA(q, t) = (t− 1)3 + 3(t− 1)2 + 3q(t− 1) + q2

= (t− 1)2
(

(t− 1) + 3 +
3q

t− 1
+

q2

(t− 1)2

)
= (t− 1)2

(q2 + (t− 1)2 + 2q(t− 1)

(t− 1)2
+
q + (t− 1)

t− 1
+ t+ 1− 1

)
= (t− 1)2TA

(q + t− 1

t− 1
, t
)

1Recall : the braid arrangement in Rn is the Coxeter arrangement of type A and rank n−1
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as desired. Also

1

(y − 1)2
χA
(
(x− 1)(y − 1), y

)
= (y − 1) + 3 + 3(x− 1) + (x− 1)2

= (x− 1 + 1)2 + (x− 1) + 2 + (y − 1)

= TA(x, y)

2. A = Linial arrangement in R3 : ∀i, j s.t. 1 ≤ i < j ≤ 3, xi − xj = 1.
So r = 2. All subarrangements other than A itself are central. Hence,
summing for subsets of sizes 2, 1, 0 respectively :

TA(x, y) = 3(x− 1)0(y − 1)0 + 3(x− 1)1(y − 1)0 + (x− 1)2(y − 1)0

= 3 + 3(x− 1) + (x− 1)2

= (x− 1 + 1)2 + (x− 1) + 2

= x2 + x+ 1

2.2 For graphs

By a “graph”, we mean a simple undirected graph, i.e. G = (V,E) where E is
an irreflexive symmetric binary relation on the elements of V . We shall assume
V =

[
|V |
]
. Due to symmetry of E i.e. undirected edges, we shall wlog denote

an edge (i, j) = (j, i) by ij where i < j.
Kn, Pn, Cn are respectively the complete graph, the path graph, and the cycle
graph on n vertices.

Definition 2.3. In G = (V,E), for a subset of edges A ⊆ E, k(A) is the number
of connected components in G|A = (V,A). k(E) is denoted c, the number of
connected components in G.

Definition 2.4. The Tutte polynomial2 of a graph G = (V,E) is

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)|A|+k(A)−|V | (3)

Definition 2.5. For a subset of edges A ⊆ E, the rank in G of A is :

rG(A) = |V | − k(A)

and rG(E) is denoted rG.

We immediately notice that on rewriting Definition 2.4 in terms of rG(A)
instead of k(A), it resembles Definition 2.1.
Imitating the transformation in case of arrangements, and replacing r by rG,
we obtain

Definition 2.6. The coboundary polynomial of a graph G = (V,E) is

χG(q, t) =
∑
A⊆E

qk(A)−k(E)(t− 1)|A| (4)

2There are a number of equivalent definitions, e.g. Tutte’s original definition in terms
of spanning trees. The definition we use is prevalent today, and the easiest to relate with
hyperplane arrangements.
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hence in this case also computing the Tutte and coboundary polynomials
are equivalent.
Let us now look at an example:
G = K3 = ([3], 2[3]). Hence c = 1, rG = 2. The summands are :

• A = E. We get (x− 1)0(y − 1)1

• |A| = 2. We have 3 symmetric cases. Hence we get 3(x−1)0(y−1)0, since
(V,A) is still connected.

• |A| = 1. Again we have 3 symmetric cases. In this case k(A) = 2. Hence
we get 3(x− 1)1(y − 1)0

• |A| = 0. k(∅) = |V | = 3. We get (x− 1)2(y − 1)0

We know that A2 = AK3 . It is apparent that the summands above correspond
exactly to those of TA2 s.t. the summand for each A ⊆ E equals that for AG|A ;
so of course TG(x, y) = TA2

(x, y) = TAG
(x, y) = x2 + x + y. But moreover,

rK3
= rA2

, and the Tutte polynomials are equal between all possible subgraphs
and corresponding subarrangements. This motivates the next section.

3 Preservation of the Tutte Polynomial

Let us recall the bijection in [2] : a graph G on n vertices is associated with an
arrangement AG ⊆ An−1 ⊆ 2R

n

, s.t. ∀i < j s.t. i, j ∈ [n], ij ∈ E(G) ⇔ Hij ∈
AG, where Hij ≡ xi − xj = 0. The main result of this section is :

Theorem 3.1. Given a graph G, TG(x, y) = TAG
(x, y)

The proof, outlined in [1], is via the following ideas:

• Rewriting Definition 2.4 in terms of rG(A), rG we get :

TG(x, y) =
∑
A⊆E

(x− 1)(|V |−rG(A))−(|V |−rG)(y − 1)|A|+(|V |−rG(A))−|V |

=
∑
A⊆E

(x− 1)rG−rG(A)(y − 1)|A|−rG(A)
(5)

• The obvious bijection between 2E and (central, but in this case all) sub-
arrangements of AG

• Lemma 3.1

Lemma 3.1. Given a graph G, rG = rAG
.

We shall state and outline the proof of a stronger lemma which shall imply
Lemma 3.1. The full force of the stronger lemma shall be required later.

Definition 3.1. A graded graph G = (V,E, h) is a graph (V,E) with a function
h : V → N, called a grading on (V,E). For a vertex v ∈ V , h(v) is called the
height of v. For any r ∈ N, h−1(r) is said to be the rth level of G.

Lemma 3.2. Given a graded graph G = (V,E, h), define AG as follows : AG =
{xi − xj = h(i)− h(j) s.t. 1 ≤ i < j ≤ n}, n = |V |. Then rG = rAG

.
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This clearly implies Lemma 3.1 since G = (V,E) can be viewed as G =
(V,E, h), h : V → {0}. The definitions of AG in Lemma 3.2 and [2] then
reconcile on non-graded graphs.
The key ideas of the proof to Lemma 3.2 are as follows :
(Recall the notion of “independence” among hyperplanes, defined to be the
linear independence of normals on them from the origin.)

• Dependence in AG arises from cycles in G, with minimal dependent3 sub-
arrangements corresponding to cycles. Example : x1 = x2, x2 = x3, x1 =
x3 are dependent, but removing any one makes them independent; they
correspond to a triangle subgraph.

• F be a spanning forest of G, then rF = rG (same connected components).
Since F is a maximal acyclic subgraph, AF is a maximal independent
subarrangement.

4 Finite field method

We know from [2] that for a large enough prime power q, a Z-arrangement
A ⊆ 2R

n

“reduces correctly” over Fnq . Using this, we have seen a finite field
method for computing χA(q). There is also a finite field method for Tutte
polynomials, arising from the following result in [1]:

Theorem 4.1. A ⊆ 2R
n

be a Z-arrangement of rank r, q a large enough prime
power, and Aq be the induced arrangement in Fnq . Then :

qn−rχA(q, t) =
∑
p∈Fn

q

th(p) (6)

where h(p) = |H(p)|, H(p) = {H ∈ A s.t. ∈ H ∩ Fnq }

The proof is from [1]. It relies on the fact that qdim∩B = | ∩ Bq| for a
subarragement B.
Let us illustrate the above result on the familiar A = A2, with q = 5. Clearly
the coefficient for ti is |p ∈ Fnq s.t. h(p) = i}|. Let us call these numbers si.

• s3 = 5, since we only choose one value for all coordinates.

• s2 = 0 since x1 = x2, x2 = x3 ⇒ x2 = x3 and so on.

• s1 = 3.5.4 = 60 since we choose two coordinates to be equal, choose their
value, and choose a different value for the remaining coordinate.

• s0 = 53 − (s1 + s2 + s3) = 125− 65 = 60 i.e. all remaining points.

Then suitably substituting in LHS of Equation 6

53−2χA2
(5, t) = 5

[
(t− 1)3 + 3(t− 1)2 + 15(t− 1) + 25

]
. . . from earlier example

= 5
[
t3 − 3t2 + 3t− 1 + 3(t2 − 2t+ 1) + 15(t− 1) + 25

]
= 5(t3 + 12t+ 12)

= 5t3 + 60t+ 60

which, from our calculations of si’s, is the RHS of Equation 6, as desired.

3This idea gives the connection to Tutte Polynomial of matroids
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5 Recovering known graph theoretic results

5.1 Graph colourings

Definition 5.1. A colouring4 κ of a graph G = (V,E) is a map V → N.

Definition 5.2. κ : V → N is a q-colouring of (V,E) if the image of κ is of
size ≤ q, i.e. “upto q colours are used”.

Definition 5.3. An edge (u, v) ∈ E is said to be monochromatic in a colouring
κ of (V,E) if κ(u) = κ(v).

There is a well known result :

Theorem 5.1. ([3, Proposition 6.3.26])

qcχG(q, t) =
∑

q-colourings
κ of G

tmono(κ)

where mono(κ) is the number of edges of G that are monochromatic in κ.

Now consider Theorem 3.1 and the Lemma 3.1 used to prove it. They give
LHS of Theorem 5.1 to be qn−rχAG

(q, t), where r = rAG
; i.e it equals the

LHS of Theorem 4.1. Now we can interpret the RHS of Theorem 4.1 to recover
Theorem 5.1 : note that every p ∈ Fnq corresponds one-to-one with a q-colouring
κp of G, s.t. an element of H(p) corresponds to a monochromatic edge.
We now see an example, with G = K3,AG = A2, q = 3. Using the computations
in earlier examples:

31χG(3, t) = 3
[
(t− 1)3 + 3(t− 1)2 + 9(t− 1) + 9

]
= 3
[
(t3 − 3t2 + 3t− 1) + 3(t2 − 2t+ 1) + 9(t− 1) + 9

]
= 3(t3 + 6t+ 2)

= 3t3 + 18t+ 6

We will see from the figures below (using colours red, blue, green) that the
values of mono(κ) are as desired.

• 1 colour, all edges monochromatic. 3 choices of colour : 3t3.

• if two edges are monochromatic, so is the third : 0t2

• 2 colours, one edge monochromatic. 3 choices of colour subset, 3 choices
of monochromatic edge, 2 choices of colour of monochromatic edge : 18t1

4In our definition “colouring” does not mean “proper colouring” by default
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• 3 colours, no monochromatic edges. Colour assignment is then a permu-
tation, so we get 3! : 6t0.

5.2 Deletion-contraction recurrence

Recall that in a graph G = (V,E) a deletion of an edge e ∈ E gives the graph

G− e = (V,E − e)

where E − e = E \ {e}
and the contraction of e = uv gives the graph

G/e = (V ′, E′)

where V ′ = ((V \ {u, v}) ∪ {w}, w /∈ V
and E′ = (E \ {ij s.t. {u, v} ∩ {i, j} 6= ∅}) ∪ {iw s.t. iu ∈ E or iv ∈ E}.
Also in a hyperplane arrangement A, for a fixed hyperplane H0, we defined the
deletion of H0:

A′ = A−H0 = A \ {H0}

which has the same ambient space as A, and the restriction w.r.t. H0 :

A′′ = A/H0 = {H ∩H0, H ∈ A′}

where the ambient space is H0.
We also established in class that :

AG−ij = AG −Hij (7)

AG/ij = AG/Hij (8)

where Hij is the hyperplane corresponding to ij in our usual bijection.

Definition 5.4. In a graph G = (V,E), an edge e ∈ E is a bridge if k(E−e) =
k(E) + 1 i.e. its deletion disconnects a component (or, {e} is a cut in G).

There is a known recursive formula for Tutte polynomial in terms of deletion-
contraction of an edge that is not a loop (edge of a vertex with itself) or bridge.
In the context of bijection with arrangements, loops do not make sense. With
this in mind, we state the recurrence :

Theorem 5.2. For a graph G = (V,E) and an e ∈ E s.t. e is not a bridge

TG = TG−e + TG/e
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In fact, this formula is a recursive definition for TG, equivalent to the defini-
tion we have used. If we assume this, then the similar result for arrangements,
Theorem 5.3 is obviously a recursive definition for TA, at least for braid subar-
rangements.
However, we can prove Theorem 5.3 for all hyperplane arrangements without
using graph theoretic results. This will immediately imply Theorem 5.2 from
Equations 7 and 8, since the rank condition in Theorem 5.3 corresponds exactly
to the bridge condition in Theorem 5.2.

Theorem 5.3. For a hyperplane arrangement A and H ∈ A s.t. rA = rA−H ,
TA = TA−H + TA/H .

A proof of the above is due to [1] via proving the equivalent statement
χA(q, t) = χA−H(q, t) + (t − 1)χA/H(q, t). The (t − 1) factor arises from the
decrease in cardinality which when written as Tutte polynomial is compensated
by decrease in ambient dimension. We use the following ideas:

• Multiply the equation by qn−r, r = rA – this is the expression to be
actually proved.

• Using Theorem 4.1, replace LHS in above by a summation over p ∈ Fnq ;
split the sum over p ∈ H and p /∈ H and use Theorem 4.1 on each sum.

Our favourite example is G = K3,AG = A2. However edge contraction and
hyperplane restriction in this example requires us to allow parallel edges and
hyperplanes with multiplicity. This arises for easy examples since braid subar-
rangements are central. Let us define :

Definition 5.5. 5 A multigraph G = (V,E,M) consists of a set V wlog =
[
|V |
]
,

E an irreflexive symmetric binary relation on V , and M : E → N.

Clearly our usual graph is where ∀e ∈ E,M(e) = 1.

Definition 5.6. A hyperplane arrangement with multiplicity is a pair (A,M)
where A is a hyperplane arrangement and M : A → N. By abuse of notation
we will denote it A when multiplicity is clear from context.

Again, our usual hyperplane arrangement is where ∀H ∈ A,M(H) = 1. The
usual association G ↔ AG can be extended naturally to G = (V,E,MG) ↔
AG = (A(V,E),MA) s.t. for each edge e ∈ E and its corresponding hyperplane
He ∈ A(V,E), MG(e) = MA(He).
Now, we know that TK3(x, y) = TA2(x, y) = x2 +x+ y. Wlog due to symmetry,
let us pick any one edge e ∈ E(K3) and its corresponding hyperplane H ≡
x1 − x3 = 0 ∈ A2. Then:

G− e = P2,AG−e = A−H = {x1 − x2 = 0, x2 − x3 = 0}

G/e = C2,AG/e = A/H

Theorem 3.1 can be generalised to this setup via the observation that adding
parallel edges / multiple hyperplanes also does not affect rank, hence the argu-
ment in the proof of Lemma 3.2 follows through. Let us verify this on the above

5Our definition still disallows loops.
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G − e, G/e and hence illustrate how the recurrence also holds. Summing over
subsets of size 2, 1, 0 :

TP2(x, y) = (x− 1)0(y − 1)0 + 2(x− 1)1(y − 1)0 + (x− 1)2(y − 1)0

= 1 + 2(x− 1) + (x− 1)2

= (x− 1 + 1)2

= x2

TA−H(x, y) = (x− 1)0(y − 1)0 + 2(x− 1)1(y − 1)0 + (x− 1)2(y − 1)0

= TP2(x, y)

It is in the contraction / restriction that our new conditions arise.
Note that deleting one of a family of parallel edges does not disconnect any
component. Hence :

TC2(x, y) = (x− 1)0(y − 1)1 + 2(x− 1)0(y − 1)0 + (x− 1)1(y − 1)0

= (y − 1) + 2 + (x− 1)

= x+ y

A/H = ({x1 = x2 = x3}, {(x1 = x2 = x3, 2)}), in the ambient space H. We
consider a (B,M ′) central if B is central. Thus :

TA/H(x, y) = (x− 1)0(y − 1)1 + 2(x− 1)0(y − 1)0 + (x− 1)1(y − 1)0

= TC2
(x, y)

And so the recurrence holds.

However, we proved Theorem 5.3 for all arrangements, not just graphical ar-
rangements. So let us verify it for an example that is not a braid subarrange-
ment. Take A to be the Linial arrangement in R3. We checked that its Tutte
polynomial is x2 + x+ 1. Wlog via symmetry, pick H to be x1 − x3 = 1.
So A−H = {x1−x2 = 1, x2−x3 = 1}. All subarrangements are central. Hence,
over subarrangements of size 2, 1, 0 :

TA−H(x, y)(x− 1)0(y − 1)0 + 2(x− 1)1(y − 1)0 + (x− 1)2(y − 1)0

= 1 + 2(x− 1) + (x− 1)2

= (x− 1 + 1)2

= x2

Now let us look at A/H. The ambient space is H ≡ x1−x3 = 1. The restriction
of x1−x2 = 1 on H, by subtracting one equation from the other, is contained in
x2−x3 = 0. Similarly the restriction of x2−x3 = 1 is contained in x1−x2 = 0.
However since x1 = x2 = x3 cannot occur within H, the two restrictions do
not intersect – i.e. A/H is two parallel lines in a plane, hence of rank 1. Thus,
summing over each line and the empty subarrangement :

TA/H(x, y) = 2(x− 1)0(y − 1)0 + (x− 1)1(y − 1)0

= 2 + (x− 1)

= x+ 1

Hence the recurrence holds.
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6 Relation to the characteristic polynomial

The Tutte polynomial of a hyperplane arrangement can be interpreted as an
expectation on the characteristic polynomial of its subarrangements.

Theorem 6.1. [1, Theorem 3.7] Let A be an arrangement in Rn and 0 ≤ t ≤ 1
be a real number. Let B be a random subarrangement of A obtained by removing
each hyperplane from A with probability t. Then

E[χ(B, q)] = qn−rχA(q, t)

The proof follows from Theorem 4.1 and its special case t = 0 (Athanasiadis’s
result exhibited in class). An example :
A = A2. B be a random subarrangement obtained as above. By symmetry, it
is enough look at the possible cardinality of B. Then :

• P (|B| = 3) = (1− t)3

• P (|B| = 2) = 3t(1− t)2

• P (|B| = 1) = 3t2(1− t)

• P (|B| = 0) = t3

Note that here, n−r = 1. Thus, from known finite field method for characteristic
polynomial :

LHS = (1− t)3q(q − 1)(q − 2) + 3t(1− t)2q(q − 1)2 + 3t2(1− t)q2(q − 1) + t3q3

= q[(1− t)3(q − 1)(q − 2) + 3t(1− t)2(q − 1)2 + 3t2(1− t)q(q − 1) + t3q2]

= q(1− t)2
[
(1− t)(q − 1)(q − 2) + 3t(q − 1)2 +

3t2q(q − 1)

1− t
+

t3q2

(1− t)2

]
= q(1− t)2

[
(1− t)(q2 − 3q + 2) + 3t(q2 − 2q + 1) +

3t2q(q − 1)

1− t
+

t3q2

(1− t)2

]
= q(1− t)2

[
q2
(

1− t+ 3t+
3t2

1− t
+

t3

(1− t)2
)

+ q
(

3t− 3− 6t− 3t2

1− t

)
+
(

2− 2t+ 3t
)]

= q(1− t)2
[

q2

(1− t)2
(

(1 + 2t)(1− t)2 + 3t2(1− t) + t3
)
− 3q

1− t

(
(1 + t)(1− t) + t2

)
+ 2 + t

]
= q(1− t)2

[
q2

(1− t)2
(

(1 + 2t)(1 + t2 − 2t) + 3t2(1− t) + t3
)
− 3q

1− t
+ 2 + t

]
= q(1− t)2

[
q2

(1− t)2
(1 + 2t+ t2 + 2t3 − 2t− 4t2 + 3t2 − 3t3 + t3)− 3q

1− t
+ 2 + t

]
= q(t− 1)2

[
q

(t− 1)2
+

3q

t− 1
+ (t− 1) + 3

]
= RHS ...from earlier computation of χA2

(q, t)

7 Graded graphs and the En arrangement

In this section we shall do an interesting example, as exhibited in [1].
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Definition 7.1. 6 For a fixed finite set A = {a1, a2, .., ak} ⊂ Z s.t. a1 < a2 <
.. < ak, En is a hyperplane arrangement in Rn containing the hyperplanes of the
form:

xi − xj = a1, a2, .., ak 1 ≤ i < j ≤ n

Since it is a generalisation of the braid arrangement, we might expect that it
has some natural connection with graphs that agrees with our known bijection.
So we recall the definition of a graded graph from Section 3, and define :

Definition 7.2. A graded graph is said to be planted if every connected com-
ponent contains a vertex of height 0.

Definition 7.3. In a graded graph (V,E, h), the slope s(uv) of an edge7 uv is
defined as h(u)− h(v).

Definition 7.4. A be a finite set of integers. A graded graph is is called an
A-graph if ∀e ∈ E, s(e) ∈ A.

Given a planted graded graph G = (V,E, h), |V | = n, define AG as in
Lemma 3.2. This is a central subarrangement of En on A = {s(e) : e ∈ E},
since (h(1), h(2), .., h(n)) ∈ ∩AG
Conversely given a central subarrangement B ⊆ En on some A, for each i < j and
at ∈ A s.t. xi−xj = at ∈ B, we write down the equation s(ij) = h(i)−h(j) = at.
Since B is central, this system of equations is consistent. We can thus obtain
the heights of each vertex in terms of the smallest height in each connected
component. Now forcing these smallest heights to be 0 ”plants” the graph,
giving us a planted graded A-graph.
By Lemma 3.2 and the above bijection of central subarrangements of En on A
with planted graded A-graphs, since rEn = rAn−1

= n − 1, we get from the
definition of coboundary polynomial:

Theorem 7.1. [1, Proposition 4.10] For En on A ⊂ Z :

qχEn(x, y) =
∑

G=(V,E,h)
planted
A−graph

qc(G)(t− 1)|E|

where c(G) is the number of connected components in (V,E) and hence in G.

Let us conclude with an example of the bijection shown above. Note that
En is not central so any central subarrangement is proper. Let AG ⊂ E10 be :

{x1 − x2 = 0,

x1 − x8 = −2,

x3 − x7 = 2,

x3 − x9 = 3,

x4 − x7 = −1,

x5 − x8 = 2,

x8 − x10 = 0}
6This notation arises from ESA.
7recall : by our notation, this means u < v, so this is well-defined.
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From this we know the edges on V = [10]. Knowing the connected components
will help us “plant” the graph. We simply execute a search algorithm8 : we
find possible paths from 1. Vertices we reach are in the same component as
1, others are not. For the others, we restart the process from another vertex,
say 3. Hence we get the components : {1, 2, 5, 8, 10}, {3, 4, 7, 9}, {6}. Now the
equations in terms of heights are :

• h(2) = h(1). h(10) = h(8) = h(1) + 2, h(5) = h(8) + 2⇒ h(5) = h(1) + 4

• h(3) = h(7) + 2 = h(9) + 3 ⇒ h(7) = h(4) + 1 = h(9) + 1 ⇒ h(9) =
h(4), h(3) = h(4) + 3.

Thus the lowest vertices in each component are {1, 2}, {4, 9}, {6}. Forcing their
heights to be 0, we get :

h−1(0) = {1, 2, 4, 6, 9}
h−1(1) = {7}
h−1(2) = {8, 10}
h−1(3) = {3}
h−1(4) = {5}

This fixes G as in the diagram below. Clearly we shall obtain the exact same
hyperplanes if we recover AG from G by our rule.

h = 0

h = 1

h = 2

h = 3

h = 4

1 2 9 4 6

7

8 10

3

5
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