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Abstract

The Mapper [SMC07] algorithm in topological data analysis is used for analyzing the shape of high-
dimensional data, via techniques inspired by the Nerve Theorem in algebraic topology. In this survey,
we outline the Mapper algorithm, its limitations, and some proposed mitigation of these limitations. We
discuss the theoretical guarantees behind an algorithm called Multiscale Mapper [DMW16] that uses
ideas from persistent homology to produce a more reliable version of Mapper. We also discuss how
Mapper can be viewed [CMO18, MW16] as a discretized version of a topological notion called the Reeb
space, which serves as an indicator of the correctness of Mapper.

1 Introduction

In 2007, three scientists at Stanford University – Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson –
proposed a new method [SMC07] to produce meaningful low-dimensional visualizations of high-dimensional
data. They called this method Mapper, and Singh and Carlsson founded the startup Ayasdi to apply
Mapper and related topological techniques to big data. One of the most anecdotally famous instances of
such applications involves Muthu Alagappan, at the time an intern at Ayasdi, and his discovery [Coh12] of
a 13-position classification of basketball players that challenged the usual 5-position classification, launching
Alagappan into sports analytics limelight.

Behind the scenes of trendy applications, Mapper relies on the fundamental algebraic-topology concept of
the nerve of a cover. Given a topological space X, and a filter function f : X → RD for some small D, the
Mapper algorithm uses a cover I of f(X) to obtain a “pullback” cover inside X, on which it computes a
nerve. It turns out that high-dimensional data can be approximated as a topological space in many ways –
for example, one can construct a Rips complex on the point cloud, or view the point cloud as a sampling
from an unknown topological space. Under such approximations, Mapper can be sensibly applied to data,
allowing us to visualize the shape of a high-dimensional point cloud, and to compute the homology of such
a shape.

The Mapper algorithm, as originally presented, relies on hand-tuning of the choices of f and I, which requires
human intervention and domain knowledge. Since the goal of Mapper is to uncover unknown topological
features, there is no obvious way to judge the optimality of the parameter choices from the output that
they produce. Thus, a key challenge in implementing Mapper is the automation of parameter tuning. A
natural idea that had emerged was to compute the persistence features of the resulting nerve, but that
raises a further question – how do we know that the homology of the nerve actually does represent the
homology of the original space? Theorem 2.1 guarantees a faithful representation for a topological space X
under certain nice conditions; but it is not immediate whether that guarantee continues to hold for a point
cloud under possibly suboptimal choices of parameters. In fact, the guarantee is not even immediate for the
one-dimensional Mapper, where D = 1. For the subsequent discussion, we will use the term D-Mapper for
Mapper with codomain RD.

As outlined in the above discussion, even the “correctness” of Mapper is under question. Carrière and Oudot
[CO17] addressed this for 1-Mapper by comparing its output to the Reeb graph of X with respect to f . They
conclude that, as I gets more granular, the Mapper converges to the Reeb graph. This suggests that the
optimal choice of parameters for the Mapper algorithm should produce an output that imitates the Reeb
graph closely. Carrière, Michel, and Oudot [CMO18] build on that notion to optimize parameter tuning for
Mapper. They study the persistence features of 1-Mapper as well as the Reeb graph under the same filter
function, and compare them under the bottleneck distance. They use this measure to tune the parameters
of Mapper, and establish Mapper as an optimal estimator of the Reeb graph.

We would naturally want to extend the above idea to larger D, since intuitively, f must obscure some
information when it reduces the dimension. For even D = 2, however, there is no clear notion of optimality for
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2-Mapper. In fact, the high-dimensional analogue of the Reeb graph, called the Reeb space, is not as intuitive
to study, which creates challenges in replicating the above optimality results for larger D. Furthermore, even
when useful nerves are produced by 2-Mapper, the choice of I becomes more complicated. It is not even
clear whether the Reeb space is the right analogue in higher dimensions – an alternative suggested [MW16]
is a category-theoretic version of the Reeb space, which produces some optimality results, but without clear
computational implications at D > 1.

Beyond correctness, one also has to consider the notion of efficiency, which encourages us to try avoiding
persistence diagrams as an additional step before we can utilize Mapper. Moreover, since a key motivation
is to produce useful visuals, one would prefer a single low-dimensional simplicial complex over a collection
of barcodes. One method, that directly applies a persistence-like notion over gradually varying parameters,
is Multiscale Mapper [DMW16]. They present their technique alongside stability and efficiency guarantees
that enable practical computation of persistence features. However, since it still requires multiple nerves to
be studied at once, it is not as useful for producing a digestible visual interpretation. A subsequent work
[DSK+18] suggests a tool called Multimapper, where different sets of parameters are applied to different areas
of the point cloud to produce a more faithful visualization. Unlike Multiscale Mapper, however, Multimapper
comes with no mathematically robust guarantees of its correctness and efficiency.

In this survey, we explain what Mapper is, and provide examples of the challenges outlined above. Then,
we exhibit a theoretical stability guarantee of the Multiscale Mapper [DMW16] technique. We conclude
with an outline of the category-theoretic approach [MW16] for proving that the D-Mapper converges to the
D-dimensional Reeb space.

2 Preliminaries

Let us first see how Mapper works on a topological space. Figure 1 provides an example, and the formal
definition is developed below.

Definition 2.1 (pullback cover). Given a function f : X → RD from a topological space X to the D-
dimensional Euclidean space, and a cover I of f(X), define the pullback cover f∗(I) of X to be the collection
∪I∈ICI where CI is the collection of connected components of f−1(I) for any I ∈ I.

Definition 2.2 (nerve of a cover). Given a topological space X and a cover J of X, the nerve N(J ) of
J is a simplicial complex constructed as follows: for each k ∈ N, for each J1, J2, . . . , Jk ∈ J such that(
∩ki=1Ji

)
∩X 6= ∅, we introduce the (k − 1)-simplex σ([k]).

Definition 2.3 (Mapper of a topological space). Given a topological space X, a filter function f : X → RD,
and a cover I of f(X), the Mapper of X with respect to f and I, denoted M(X, f, I), is defined as the nerve
of f∗(I), i.e.

M(X, f, I) = N(f∗(I))

When X and f are clear from context, we will drop them from the notation.

Here, it is useful to see how the choice of I affects the output. Figure 2 shows how a suboptimal I can
obscure important features of the shape of X. Notice that the same change can be effected by slightly
changing f instead of I: in the hand shape of Figure 1, the dark green interval ends very close to the base
of the thumb, and a slight perturbation of f could create the situation where the inverse image of the dark
green interval has a single connected component.

The definition of Mapper can be translated almost exactly for a point cloud X, but we need a more sensible
notion in the place of connected components since X is discrete. Hence, we use a clustering algorithm, which
becomes one of the parameters of Mapper, to identify points in each f−1(I) that are close together.

Definition 2.4 (Mapper of a point cloud). Given a point cloud X, a filter function f : X→ RD, a cover I
of f(X), and a clustering algorithm C that returns a collection of clusters, the Mapper of X with respect to
f , I, and C, denoted M(X, f, I, C), is defined as the nerve of the cover ∪I∈IC(f−1(I)).

As before, we will drop f and X from the notation whenever clear from context. For the purposes of this
discussion, we will not focus on optimizing the choice of clustering algorithm, so we will also drop C from our
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Figure 1: 1-Mapper on a hand shape with respect to the height function

notation hereafter. By abuse of notation, we will also refer to the pullback cover in the point cloud context,
defining

f∗(I) := ∪I∈IC(f−1(I))

Moving to the point cloud context introduces further optimization issues with the choice of I. Earlier, we
saw how issues arise when I is not granular enough. In Figure 3, we see how issues can arise in the point
cloud setting when I is too granular.

To establish some notion of correctness, Mapper is compared to the Reeb space, which is defined as follows:

Definition 2.5 (Reeb space). Given a topological space X and a continuous function f : X → RD, we
define the equivalence relation ∼f on X by saying that x ∼f y if f(x) = f(y), and x and y lie in the same

connected component of f−1(f(x)). The Reeb space of X with respect to f is the space X�∼f .

Definition 2.6 (Reeb graph). When D = 1, the Reeb space is called the Reeb graph.

Comparing Figure 2, Figure 1, and Figure 4 gives us the intuitive idea of how, with finer and finer covers
being selected, 1-Mapper indeed converges to the Reeb graph. This notion can be formalized [CMO18].

3



Figure 2: 1-Mapper on a hand with I such that the thumb is not detected

Figure 4: Example of a Reeb graph

Before we proceed, we state the theorem that provides intuition for Mapper being a suitable representation
of the original data.

Theorem 2.1 (Nerve Theorem [Hat02]). If J is an open cover of a paracompact space X such that every
nonempty intersection of finitely many sets in J is contractible, then X is homotopy equivalent to the nerve
N(J ).
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(a) Good choice of I (b) Bad choice of I

Figure 3: 1-Mapper on ring-shaped point cloud comparing different choices of I

3 Multiscale Mapper [DMW16]

Dey, Mémoli, and Wang [DMW16] suggest a technique called Multiscale Mapper that combines the Mapper
algorithm with a persistence-like idea, constructing a series of Mappers at varying scales and setting up a
sequence of maps to compare subsequent Mappers on this scale. Let us first see, in Figure 5, an intuitive
example of this construction, which should make clear its relationship to persistence.

Figure 5: Example of Multiscale Mapper showing appearance and disappearance of holes

To formally set up the Multiscale Mapper construction, we need the following definitions.

Definition 3.1 (Simplicial map [DMW16]). Let K and L be two simplicial complexes over the vertex sets
VK and VL respectively. A set map φ : VK → VL is a simplicial map if φ(σ) ∈ L for each σ ∈ K.
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For the Multiscale Mapper construction, it is assumed that all covers chosen are open and path-connected,
and that the filter function chosen is piecewise linear (which ensures that it is Morse – a standard requirement
[CO17] in Mapper literature). In order to study how Mappers vary with variations in the choice of cover,
we set up maps between covers, and corresponding maps between the resulting nerves.

Definition 3.2 (Maps between covers and nerves [DMW16]). Given two covers I = {Ia}a∈A, J = {Jb}b∈B
of the same space X, a map of covers is a map ξ : A → B such that for each a ∈ A, Ia ⊆ Jξ(a). For
simplicity, we abuse notation and call the map of covers ξ as well.

A map of covers ξ induces a simplicial map N(ξ) : N(I)→ N(J ), which is given on vertices by ξ and then
extended to the higher-dimensional simplices.

The relationship between the two kinds of maps above is preserved under composition. If we have maps of

covers I ξ−→ I ′ ζ−→ I ′′, then we have N(ζ ◦ ξ) = N(ζ)◦N(ξ). Figure 6 exhibits this correspondence intuitively.

Figure 6: Example showing correspondence of tower of covers, tower of pullback covers, and tower of nerves

Now we start defining Multiscale Mapper formally.

Definition 3.3 (Tower [DMW16]). A tower I of covers with resolution res(I) = r ∈ R is a collection {Iε}ε≥r
of covers together with maps ξε,ε′ : Iε → Iε′ so that ξε,ε = id, and for r ≤ ε ≤ ε′ ≤ ε′′, ξε,ε′′ = ξε′,ε′′ ◦ ξε,ε′ .

We write I = {Iε
ξε,ε′−−−→ Iε′}r≤ε≤ε′ to denote a tower of covers.

A tower of simplicial complexes or vector spaces is also defined in the exact same way, with the intervening
maps being simplicial maps or linear maps respectively.

One can verify that, given f : X → Rn and a tower I of covers of Rn, the pullback f∗(I) := {f∗(I)}I∈I is
a tower of covers of X. We can intuitively see this in Figure 6.

On a tower of covers I = {Iε
ξε,ε′−−−→ Iε′}r≤ε≤ε′ , we can naturally define the induced tower of simplicial com-

plexes N(I) := {N(Iε)
N(ξε,ε′ )−−−−−→ N(Iε′)}r≤ε≤ε′ . With this in mind, we are ready to understand Multiscale

Mapper formally.

Definition 3.4 (Multiscale Mapper, [DMW16]). With respect to a filter function f : X → Rn and a tower
I of covers of Rn, the Multiscale Mapper MM(X, f,I) is defined to be the tower of nerves induced on X by
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the pullback of I, i.e.
MM(X, f,I) = N(f∗(I))

As we did for Mapper, we will drop X and f whenever clear from context.

The tower of nerves induces a tower of vector spaces over Z when we compute the homology of each nerve in
the tower. Computing barcodes on this tower allows us to identify the covers for which Mapper gives a faithful
visualization of the original space. Since barcodes are computed for a continuously varying parameter, we
need a notion of gradual change to develop Multiscale Mapper. This is achieved by using only those towers
of covers where successive covers vary gradually with the change in index. In this discussion, such a property
(Assumption 1) is assumed for towers of covers hereafter. Our assumption is a simplification of a more
rigorous goodness condition that is presented in the original analysis [DMW16].

Assumption 1 (Good tower). A tower of covers I with resolution s has the following properties for each
ε ≥ s:

� If I ∈ Iε, then diam (I) ≤ 2ε

� For any J ⊆ RD with diam (J) ≤ 2ε, ∃I ∈ Iε such that J ⊆ I.

The above property captures the desired notion of gradualness because it ensures that the diameters of the
cover elements are bounded by a function of the indices of the tower. We will also assume that, when we
use a filter function f , we will only use towers of covers with resolution at most log diam (f(X)).

We saw earlier that small variations in I or f can alter the output of Mapper drastically. We will now see
how Multiscale Mapper is more stable in this sense.

3.1 Stability under perturbation of f

Dey, Mémoli and Wang [DMW16] exhibit that, if we begin from the same tower I of covers, and use two
different filter functions f and g that are almost the same, then the resulting towers MM(f, I) and MM(g, I)
are interleaved, i.e. the levels of one tower sandwiches the levels of the other tower. This indicates that they
are a small perturbation of each other.

Below, we see a simplified version of the result. The precise result requires more machinery, which we omit
here in the interest of focusing on the overview. In particular, where the original result uses the contiguity
notion to denote that two simplicial maps are similar, we will pretend that those simplicial maps are equal.

Definition 3.5 (Interleaved towers [DMW16]). Two towers of simplicial complexes with equal resolution,

S =
{
Sε

sε,ε′−−−→ Sε′
}
r≤ε≤ε′

and T =

{
Tε

tε,ε′−−−→ Tε′
}
r≤ε≤ε′

, are said to be η-interleaved if there are collections

of maps {φε : Sε → Tε+η}ε≥r and {ψε : Tε → Sε+η}ε≥r such that the following diagrams [DMW16] commute
up to contiguity.
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Interleaved towers of covers are defined similarly, with the maps φε and ψε being maps of covers.

Via our simplifying assumption that contiguity is equality, we can simply pretend that the diagrams above
commute for interleaved towers of simplicial complexes.

The following statement shows that similar filter functions lead to similar pullback covers.

Proposition 3.1 (Simplified from Proposition 4.5, [DMW16]). Consider two filter functions f, g : X →
RD such that maxx∈X d(f(x), g(x)) ≤ δ. For a good tower I of covers of RD with resolution s such that

1 ≤ s ≤ min(log diam (f(X)) , log diam (g(X)) , δ)

the corresponding towers of pullback covers f∗(I) and g∗(I) are η-interleaved for

η := log(2δ + 1)

Proof. First, for some J ⊆ RD, consider x ∈ f−1(J), so we have d(f(x), J) = 0 and hence

d(g(x), J) ≤ d(f(x), J) + d(f(x), g(x)) ≤ δ

which means that f−1(J) ⊆ g−1(Jδ) where

Jδ = {y ∈ RD | d(y, J) ≤ δ}

Generalizing, the above means that, ∀J ⊆ RD

f−1(J) ⊆ g−1(Jδ) (1)

Now, for an index ε, consider U ∈ f∗(Iε). Let I ∈ Iε be such that U is a connected component of f−1(I).
By (1), f−1(I) ⊆ g−1(Iδ). We know by Assumption 1 and the definition of maps of covers that, since
diam

(
Iδ
)
≤ 2δ + diam (I) ≤ 2δ + 2ε ≤ (2δ + 1)2ε = 2η+ε, there is a set I ′ ∈ Iε+η containing Iδ, and hence

containing I. Hence U lies in some connected component of g−1(I ′). Call this connected component V . We
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can construct a map of covers iε : f∗(Iε) → g∗(Iε) such that for each U ∈ f∗(Iε), iε(U) = V as per the
above construction.

The map of covers in the other direction is constructed similarly. �

The above result for D = 1 is illustrated in Figure 7. The interleaving maps of covers induce simplicial
maps between the corresponding nerves, which are also η-interleaved since the sets in the pullback covers
correspond directly with the 0-simplices. This gives us the notion of stability of Multiscale Mapper under
perturbation of the filter function f .

Figure 7: Sketch of Proposition 3.1 for D = 1

3.2 Further stability results

A proof similar to that of Proposition 3.1 can be used [DMW16] to show that Multiscale Mapper is stable
to simultaneous perturbations of both the filter function f and the tower of covers I. Under Assumption 1,
we state a simplified version of that generalization.

Theorem 3.1 (Simplified from Theorem 4.7, [DMW16]). Consider two filter functions f, g : X → RD
such that maxx∈X d(f(x), g(x)) ≤ δ. Also consider two η′-interleaved good towers I, J of covers of RD
with res(I) = res(J) = s such that

1 ≤ s ≤ min(diam (f(X)) ,diam (g(X)) , δ)

Then the towers of pullback covers f∗(I) and g∗(J) are η-interleaved for

η := log(2δ + 1 + η′)

4 Mapper as a discretized Reeb space

Earlier, we provided a pictorial idea of how the 1-Mapper converges to the Reeb graph. This idea can be
formalized [CMO18] in the setting where the point cloud is assumed to be an unknown sampling from an
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unknown topological space.

ForD > 1, Munch and Wang [MW16] propose the use of category-theoretic tools to set up similar convergence
results of the D-mapper to the Reeb space at dimension D. We outline their result below.

For the purposes of this discussion, we will think of a category as follows:

Definition 4.1 (category). A category C is a collection of objects Ob(C) with arrows or morphisms Hom(C)
between them.

The arrows are called Hom(C) because some common categories are formed by groups, rings, etc. algebraic
structures as objects and the relevant homomorphisms as arrows. Some examples of categories are as follows.
Many of them will be useful in our discussion.

Category Objects Arrows

Set sets set maps
Top topological spaces continuous maps

Open(RD) open sets in RD inclusion maps
Vect vector spaces linear maps

Cell(K) simplices of a simplicial complex K σ → τ if σ is a face of τ
Poset category poset (P,≺) a→ b if a ≺ b

RD-Top
(X, f : X → RD) where

X ∈ Ob(Top) and f is continuous
(X, f)→ (Y, g) induced by ν : X → Y

such that g ◦ ν = f
Opposite category

Cop x ∈ Ob(C)
fop : y → x for

each f : x→ y in Hom(C)

We will need two further notions: a way to relate categories to one another, called functors, and a way to
relate functors to one another, called natural transformations.

Definition 4.2 (functor). A functor between two categories C and D, denoted F : C → D, sends objects to
objects and arrows to arrows in a manner that respects identity and composition laws, i.e.

� ∀x ∈ Ob(C), F [idx] = idF (x), and

� ∀f, g ∈ Hom(C), F [g ◦ f ] = F [g] ◦ F [f ]

Here are some examples of functors that will be useful in our subsequent discussion. Notice that these
constructions are somewhat reminiscent of our earlier discussion about pullbacks and maps of covers.

F : C → D on Ob(C) on Hom(C)

π0 : Top→ Set
Set of connected components

of X ∈ Ob(Top)
Set map induced by f
from π0(X) to π0(Y )

Thickening functor

Tε : Open(RD)→ Open(RD) Xε = {x ∈ RD | d(x,X) ≤ ε} X ↪→ Xε

Definition 4.3 (natural transformation). Given two functors F,G : C → D, a natural transformation
between them is a family of arrows φ = {φx : F (x) → G(x)}x∈Ob(C) in D such that the following diagram
[MW16] commutes:

We can think of natural transformations as arrows between objects that are themselves functors. This
motivates the following definition:
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Definition 4.4. For two categories C and D, DC is the category such that Ob(DC) is the collection of
functors C → D, and Hom(DC) is the collection of all natural transformations between all such functors.

Equipped with these notions, we can now describe the Reeb space in category theory terms.

Definition 4.5 (categorical Reeb Space, [MW16]). For (X, f : X → RD) ∈ Ob(RD-Top), the categorical
Reeb space is the functor π0f

−1 : Open(RD)→ Set such that

� For an open set U ⊆ RD, π0f
−1(U) is the set of connected components of f−1(U).

� For an inclusion map U ↪→ V , π0f
−1[U ↪→ V ] is the set map induced by f between the connected

components of f−1(U) and f−1(V ).

The above notion can be reconciled with our usual definition of a Reeb space by observing that if all possible
pullback covers are defined, then our Reeb space is also indirectly defined. We also notice that, by the

definition, a categorical Reeb space is an object in the category SetOpen(RD). So the construction of the

Reeb space from the original space is a functor C : RD-Top→ SetOpen(RD).

We will use the above machinery to introduce the notion of interleaved categorical Reeb spaces. Recall the
proof of Proposition 3.1; we mimic that idea here, in the following steps. Since the Reeb space is a functor
F : Open(RD) → Set, we can compose it with the functor Tε : Open(RD) → Open(RD) in the obvious
way: for each open set, start with its contribution to the Reeb space, and go to its thickening’s contribution
to the Reeb space. Formally:

Sε(F ) := FTε

By the above, F [I ↪→ I2ε] induces a natural transformation nF : F ⇒ S2εF . In Figure 8: the yellow shading
shows how F = π0f

−1 behaves, the green shading shows how S2ε(F ) behaves, and the red shadings show
the natural transformation between these two Reeb spaces.

Figure 8: Natural transformation between Reeb spaces induced by ε-thickening

This interleaving produces the notion of a distance between two Reeb spaces.

Definition 4.6 (Interleaving Reeb spaces [MW16]). An ε-interleaving between Reeb spaces F,G : Open(RD)→
Set are a pair of natural transformations φ : F ⇒ Sε(G) and ψ : G⇒ Sε(F ) such that the following diagrams
[MW16] commute, where η = nF , τ = nG.
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This induces the following notion of interleaving distance between two Reeb spaces:

dI(F,G) = inf{ε ∈ [0,∞) | F,G are ε-interleaved}

The convention above is that the infimum of an empty set is ∞. The above notion of distance is indeed a
sensible distance between Reeb graphs:

Theorem 4.1 (Theorem 5.2, [MW16]). dI is an extended pseudometric on Ob(SetOpen(RD)).

Now, we will set up a categorical definition of Mapper. We will assume that we have a good cover with
regards to the Nerve Theorem conditions, i.e.

Assumption 2. A cover I of RD and its pullback f∗(I) satisfy the hypotheses of Theorem 2.1.

Fix a cover I of RD, and set K := M(I). Then, consider an arrow σ ≤ τ in Cell(K). The corresponding
intersection of cover elements is in the opposite direction, i.e. is of the form Uτ ⊆ Uσ, where Uσ is the
intersection of elements of f∗(I) corresponding to σ. Hence, we will use the opposite category Cell(K)op to
construct the categorical Mapper.

Definition 4.7 (categorical Mapper, [MW16]). The categorical Mapper on (X, f) is the functor CfK :
Cell(K)op → Set given by

CfK(σ) = π0f
−1(Iσ)

where Iσ is the intersection of elements of I corresponding to Uσ. Hence the process of constructing the

categorical Mapper is a functor Ck : RD-Top→ SetOpen(RD).

With the above definitions of the categorical Reeb space and Mapper, we are ready to state (a simplified
statement of) the main convergence result in Munch and Wang’s [MW16] paper. The result relies on the

existence of a functor PK : SetCell(K)op → SetOpen(RD), which creates a continuous version of the Mapper,

thus pushing it into the category SetOpen(RD) and enabling it to be compared to the Reeb space. The
construction of PK is the main technical contribution in the paper [MW16]. Below, we state their main
result in terms of PK , and then provide an overview of how PK is constructed.

In the following statement, the resolution of a cover I of RD is defined as

res(I) = sup
I∈I

diam (I)

Theorem 4.2 (Simplified from Theorem 4.1, [MW16]). Given (X, f) ∈ Ob(RD-Top) and a cover I of
f(X) ⊆ RD, let K = M(X, f, I). Then

dI(C(X, f),PKCK(X, f)) ≤ res(I)

The functor PK is set up in terms of a category theoretic construction knows as the colimit of a functor.
This is defined as follows.

Definition 4.8 (cocone). The cocone of a functor F : C → D is a pair (N,ψ) where N ∈ Ob(D), and
ψ = {ψx : F (x)→ N}x∈Ob(C) is a family of arrows in D, such that ∀f : x→ y in Hom(C)

ψy ◦ F [f ] = ψx

Definition 4.9. A cocone (N,ψ) is said to factor through the cocone (L, φ) if ∃u ∈ Hom(D) such that
∀x ∈ Ob(C), u ◦ φx = ψx.

Definition 4.10 (colimit). (L,ψ) is said to be the colimit of F : C → D if it is a cocone of F such that any
other cocone of F factors through it.

The following diagram [MW16] provides the visual definition of the colimit.
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To define PK : SetCell(K)op → SetOpen(RD), we need a functor PK(F ) : Open(RD)→ Set for any functor
F : Cell(K)op → Set. This definition is made as follows. For any open set A ⊆ RD, KA be the set of
simplices σ in K such that Iσ intersects A. Then, for an open set A ⊆ RD,

PK(F )(A) = colimσ∈KA
F (σ)

and the arrows are the natural transformations induced by the above.

To understand PK intuitively, note that F in the definition of PK is the Mapper, so F (σ) is the set of
pullback elements that contribute to Uσ. Since the target category is Set, the L in the colimit is formed by
the union; so by taking the colimit, we are able to consider all connected components in the pullback that
intersect with f−1(A). The proof in the paper [MW16] uses this to identify the part of the Reeb space that
corresponds to A. In Figure 9, we sketch this intuition in the D = 1 case, with the gray-shaded regions
corresponding to the construction of PK(F )(A). The striped portion in the sketch is an example of F (σ) as
computed from a simplex σ ∈ KA, which in this example is the top right edge in the Mapper.

Figure 9: Sketch of construction of PK : SetCell(K)op → SetOpen(RD)

We conclude with an alternate visual overview of the main result Theorem 4.2. Consider the following
diagram [MW16]:
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The above diagram does not commute, but the main result of the paper [MW16] bounds how far this diagram
is from being commutative.
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