
CS 49/249: Randomized Algorithms (Spring 2021) : Reading&Writing
Topic: Decentralized Graph Coloring from a paper by Bertschinger et al. [BLM+20]

Disclaimer: These notes have gone through scrutiny, but they still probably have errors.
Please send any errors you find to ankita.sarkar.gr@dartmouth.edu

Other than the cited papers, the following resources were useful in preparing this note:

1. DeepC’s lecture note template and writing guidelines.

2. These writing tips, especially the “Citations and References” section.

3. Online TEX tools – Overleaf, Detexify, TeX StackExchange.

4. Wikipedia articles on probability theory.

Content begins on the following page. Enjoy!

1

https://cs.dartmouth.edu/~wjarosz/writing.md.html

• Graph coloring. Here is a classic problem: consider a graph G = (V,E) and a palette of colors P . If
each vertex is painted with a color from P , we get a coloring, c : V → P . We call a coloring proper
if no edges are monochromatic, i.e. no uv ∈ E should have c(u) = c(v). A proper coloring is easy to
get if |P | = |V |; but in the graph coloring problem, we have to use the fewest possible colors.

Remark: An application of graph coloring is in channel selection for WiFi routers. Routers that
are close to each other must use different frequency channels to avoid interference. The number
of available channels is far smaller than the total number of routers.

Graph coloring is NP-hard, so it is worthwhile to look at useful special cases. For instance, if we
knew that α colors suffice for a proper coloring, could we produce such a coloring?

• α can be (∆ + 1), where ∆ is the maximum degree in G. A simple induction argument shows that
(∆+1) colors will suffice to produce a proper coloring. This is also tight, e.g. in complete graphs. So
α = (∆ + 1) is an important special case. We consider the problem of producing a (∆ + 1)-coloring,
i.e. a proper coloring that uses at most (∆ + 1) many colors.

(∆ + 1)-COLORING

Input. A graph G = (V,E), |V | = n, |E| = m, maxv∈V degG(v) = ∆.

Output. c : V → [∆ + 1] such that ∀uv ∈ E, c(u) 6= c(v).

Here is a simple randomized approach: for each vertex v, pick c(v) ∈ [∆ + 1] independently and
uniformly at random. Then, each edge has probability 1/(∆ + 1) of being monochromatic, so the
expected number of monochromatic edges is m/(∆ + 1). This can be Θ(n), e.g. in complete graphs
– so we try to “fix” the monochromatic edges by randomly recoloring some vertices.

• The algorithm. After the first random coloring, if there are vertices with neighbors of the same color,
then pick one such vertex v at random. Repick c(v) uniformly at random from [∆ + 1]. If there still
are monochromatic edges, then repeat.

1: procedure RANDCOLOR(G(V,E), ∆)
2: . c will be our coloring, c : V → [∆ + 1]
3: for v ∈ V do . initial random coloring
4: c(v)←RANDOM([∆ + 1])

5: while ∃ uw ∈ E, c(u) = c(w) do . as long as there is a monochromatic edge
6: v ←RANDOM({v | ∃u ∈ N(v), c(u) = c(v)}) . pick random “violating” vertex
7: c(v)←RANDOM([∆ + 1]) . random recoloring of v

8: return c

RANDCOLOR runs until it produces a proper coloring, so we want to know the expected number of
recoloring steps, i.e. iterations of Line 5, that are needed to get to a proper coloring.

• Intuition. RANDCOLOR only recolors one vertex at a time. Let ct be the coloring after the tth

recoloring step; if ct−1 assigned the color pink to 5 vertices, then at least 4 vertices remain pink in ct.
Also if, at some step, there is exactly one pink vertex, then that vertex will never be recolored until

2

it gets a pink neighbor. So once there is pink in the graph, the number of pink vertices never drops
below 1. Hence, consider this intermediate goal: get all the (∆ + 1) colors somewhere in the graph.

In a complete graph, this intermediate goal is equivalent to the final goal – if we have n colors in a
graph, it must be properly colored. So RANDCOLOR behaves as follows on a complete graph: each
recoloring step introduces a new color into G with some probability, and once we have seen all n
colors, we are done. But this is a familiar problem – Coupon Collector! Thus we can expect that, on
a complete graph, O(n log n) recolorings will produce a proper coloring.

We extend this intuition to general graphs as follows: for a vertex v, if {v}∪N(v) has (degG(v) + 1)
colors in it, then it is properly colored. So “locally” in {v} ∪N(v), expected O(∆ log ∆) recoloring
steps give a proper coloring. Crudely, each of these sets have≈ ∆ vertices, so V is made up of≈ n/∆
such sets. Hence, we guess that RANDCOLOR takes expected O((n/∆) · ∆ log ∆) = O(n log ∆)
recoloring steps to get a proper coloring globally. This guess is, happily, correct [BLM+20].

• Analysis. We will employ a familiar tactic. We define a potential function that decreases as we get
“closer” to a proper coloring, and is zero at a proper coloring. A natural candidate for this function is
the size of Mt, the set of monochromatic edges after the tth recoloring step.

Let ΦM (t) := |Mt|. Qualitatively, if each recoloring step caused an expected δ decrease in ΦM , then
we would need an expected ΦM (0)/δ recoloring steps. This can be formalized via a theorem due to
He and Yao [HY04], which gives the following when applied to our ΦM .

Theorem 1 (Additive Drift of ΦM). T be the first t where ΦM (t) = 0. If ∃ δ > 0 such that
∀s ∈ [m] and ∀t > 0 we had

Exp[(ΦM (t)−ΦM (t− 1)) | ΦM (t− 1) = s] ≤ −δ

then we have

Exp[T] ≤ Exp[ΦM (0)] / δ

We know that Exp[|M0|] = m/(∆ + 1). We need Exp[(|Mt| − |Mt−1|) | |Mt−1|]. If v is
recolored at the tth step, then ct−1 and ct can differ only at v. If ct−1(v) was pink, and v was picked
for recoloring, then v must have pink neighbors. Let C be the set of vertices that are reachable from
v via only pink vertices; we will call C a maximal monochromatic component containing v. Then,
exactly degC(v) neighbors of v are pink. With probability ∆/(∆ + 1), ct(v) 6= ct−1(v), so the
degC(v) pink neighbors of v will no longer form monochromatic edges with v. But, for each non-
pink neighbor u of v, ct(v) could be ct(u) = ct−1(u) with probability 1/(∆ + 1); this creates the new
monochromatic edge uv. Hence, conditioned on the event Ev that v is recolored at the tth step,

Exp[(|Mt| − |Mt−1|) | |Mt−1| , Ev] =
∆

∆ + 1
· (−degC(v)) +

1

∆ + 1
· (degG(v)− degC(v))

(1)

≤ −degC(v) +
∆

∆ + 1
(2)

If we condition, instead, on the event EC that some vertex v ∈ C gets recolored, then we get

Exp[(|Mt| − |Mt−1|) | |Mt−1| , EC] ≤ −d(C) +
∆

∆ + 1
(3)

3

where d(C) is the average degC(w) over all w ∈ C. When |V (C)| ≥ 3, we have1 d(C) ≥ 4/3,
so the RHS in Equation (3) becomes ≤ −1/3. Then in Theorem 1, we could put δ = 1/3, to get
Exp[T] ≤ 3m/(∆ + 1). That, by the handshake lemma, is O(n).

Sadly, we know that |V (C)| = 2 will occur. As we get closer to a proper coloring, we expect C’s to
be smaller, so we will see isolated monochromatic edges, i.e. C’s of size 2. Then, we can only say
that d(C) ≥ 1, so δ = 1/(∆ + 1), which only assures an expected m = O(n∆) recolorings.

• Towards a better potential function. Motivated by the above, we tweak our potential function to
include It, the set of isolated monochromatic edges after the tth recoloring step. Let ΦI = Θ(|It|).
We will fix constants suitably later, to ensure that (ΦM + ΦI) behaves the way we want. Now, let us
study the effect of recolorings on |It|.
When a pink v is recolored to green, each of its degC(v) pink neighbors could form one new isolated
pink edge of the form uw, u ∈ N(v), w ∈ N(u). Also, if v has a green neighbor x that was properly
colored in ct−1, i.e. all of N(x) was non-green in ct−1, then vx would become a new isolated green
edge. So up to (degC(v) + 1) new isolated monochromatic edges could be created, giving us

Exp[(|It| − |It−1|) | |It−1| , EC] ≤ d(C) + 1 (4)

The above is an increase; but the hope is that when ΦM is big, it will dominate over ΦI , and when
ΦM is small, the above bound can be improved. Indeed, when ΦM is small, most C’s affected by re-
coloring will be isolated monochromatic edges. When C = uw such that ct−1(u) = ct−1(w) = pink,
then conditioned on EC , each of u or w gets recolored with probability 1/2. Wlog, say u gets recol-
ored. With probability ∆/(∆ + 1), u gets a non-pink color, perhaps green. Then uw is no longer
monochromatic, but u could form new isolated green edges. Where Pt is the set of properly colored
vertices after step t, it is precisely u’s neighbors in Pt−1 that could form a new isolated green edge
with u. This occurs with probability 1/(∆ + 1) per vertex in N(u) ∩ Pt−1. So we get

Exp[(|It| − |It−1|) | |It−1| , EC , C = uw] ≤ − ∆

∆ + 1
+
|N(u) ∩ Pt−1|+ |N(w) ∩ Pt−1|

2(∆ + 1)
(5)

= − ∆

∆ + 1
+
e({u,w}, Pt−1)

2(∆ + 1)
(6)

where e(A,B) is the number of edges between disjoint subsets A,B ⊆ V .

Remark: All our bounds study how ct differs from ct−1. So to be more precise, we should be
conditioning on EC ∧ Ec, where the latter is the event that ct−1 is some specific coloring c.

We notice that e({u,w}, Pt−1) can increase as more of the graph gets properly colored; but alongside,
(ΦM + ΦI) decreases. To account for this tradeoff between (ΦM + ΦI) and e({u,w}, Pt−1), we
will include ΦP (t) = Θ(e(V (It), Pt)/∆) in our potential function.

The expected behavior of ΦP at every recoloring step can also be bounded, but the calculations are
somewhat tedious and can obscure the main idea. So we focus on the idea: when a vertex v has
|N(v) ∩ (V (It−1) ∪ Pt−1)| = y, then it can contribute ≤ (∆ − y) new neighbors to V (It) ∪ Pt. So
overall, N(v) appears in ≤ y(∆ − y) new edges that contribute f(y) := y(∆ − y)/∆ to ΦP (t) −
ΦP (t− 1). This function is concave2, so when ΦP becomes large, it begins to decrease fast.

1proof: induction on |V (C)|.
2visually, its plot looks like a dome.

4

Remark: Formalizing the above uses a cool fact called Jensen’s inequality, which can be stated
in many different and equally interesting ways, depending on what kind of math one is doing.

Since ΦP only decreases when (ΦM + ΦI) becomes small, we are motivated to give a tiny constant
to ΦP . Our potential function, then, looks like:

Φ(t) = |Mt|+
|It|
10

+
e(V (It), Pt)

100∆

Sadly, summing up the bounds on each term does not give a small enough δ for Theorem 1 to apply
to Φ. It does, however, provide a multiplicative guarantee of decrease

Exp[Φ(t) | Φ(t− 1)] ≤ (1− δ) ·Exp[Φ(t− 1)]

for a δ = Θ(1/n). Happily, there a stronger drift theorem due to Doerr, Johannsen, and Winzen
[DJW12] that works with multiplicative decrease, and gives us:

Theorem 2 (Multiplicative Drift of Φ). S be all possible values that Φ can take, and smin be the
smallest non-zero element in S. Then, if ∃ δ > 0 such that ∀s ∈ S \ {0} and ∀t > 0, we had

Exp[(Φ(t)−Φ(t− 1)) | Φ(t− 1) = s] ≤ −δs

then we can say

Exp[T | Φ(0) = s0] ≤ 1 + ln(s0/smin)

δ

Intuitively, if Φ(t) is multiplied by (1 − δ) at each step, then it takes log1−δ(smin/s0) steps for it to
reach smin, whereafter its next decrease is to 0. We now must figure out smin which, for a complicated
function like Φ, can be a messy quantity. This motivates us to tweak3 Φ one last time.

• We know from Equation (3) that ΦM shows an expected additive decrease of ≈ 1/∆. If at some t we
get Φ(t) < n/∆, we also get ΦM (t) < n/∆; then by Theorem 1, we expect only O(n) more steps
to be required. So once Φ drops below n/∆, it might as well be zero for our analysis. Hence, let

Φ′(t) =

{
Φ(t) if Φ(t) ≥ n/∆
0 otherwise

Φ′ decreases at least as fast as Φ, so Theorem 2 applies to Φ′ as well. Then smin becomes n/∆, and
since each term in Φ(0) is O(m), we get s0 = O(m) = O(n∆). So we have, using δ = Θ(1/n),

Exp[T | Φ′(0) = s0] = O

1 + ln
(
n∆
n/∆

)
δ


= O(1 + 2 ln ∆) · 1

Θ(1/n)

= O(n log ∆)

as promised.

3 “This isn’t even my final form.” – Frieza, in Dragonball Z.

5

Takeaway: The Coupon Collector intuition helps us throughout. Indeed, that is why the (∆− y) term
was important – it arises from the (∆−degC(v)) “unseen colors” around a vertex v. Moreover, the fact
that we got multiplicative drift rather than additive, can also be explained via Coupon Collector – our
progress towards seeing all coupons is slower when more coupons have been seen, and this slowdown
brings in the log factor.

It is also worth noting that Φ very clearly captures the changing configuration of the graph as the
algorithm progresses: ΦI becomes important when ΦM becomes small, and ΦP becomes important
when ΦI becomes small.

Ponder This: In our final reasoning, we used the worst possible s0, ignoring the randomness of the
initial coloring. In fact, the paper [BLM+20] goes on to assert that the initial coloring could have been
adversarial without changing the result.

References

[BLM+20] Daniel Bertschinger, Johannes Lengler, Anders Martinsson, Robert Meier, Angelika Steger,
Miloš Trujić, and Emo Welzl. An optimal decentralized (δ + 1)-coloring algorithm. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium
on Algorithms (ESA 2020), volume 173 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1–17:12, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. 1, 3, 6

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algorith-
mica, 64(4):673–697, feb 2012. 5

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary
algorithms. Natural Computing, 3(1):21–35, 2004. 3

6

