
Randomized Rounding for Uncapacitated Facility Location1

• In the uncapacitated facility location (UFL) problem, we are given a set of clients C, a set of facilities
F , and a distance function d on C ∪ F that satisfies the triangle inequality. We are also given facility
opening costs {fi}i∈F . The task is to “open” a subset S ⊆ F of facilities that minimizes the sum of
the facility cost costF (S) =

∑
i∈S fi and the connection cost costC(S) =

∑
j∈C d(j, S), where

d(j, S) is the smallest distance from j to any point in S. This problem is NP-hard, and we look at an
approximation algorithm for it that uses the primal and the dual linear programs for it, as follows. In
the primal, variables yi denote whether i ∈ S, and xij denotes whether client j connects to facility i.

Primal:

min
∑
i∈F

fiyi +
∑
j∈C

∑
i∈F

xijd(i, j)∑
i∈F

xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0 ∀j ∈ C, i ∈ F

xij ≥ 0,yi ≥ 0 ∀j ∈ C, i ∈ F

Dual:

max
∑
j∈C

vj∑
j∈C

wij ≤ fi ∀i ∈ F

vj − wij ≤ d(i, j) ∀i ∈ F, j ∈ C

vj ≥ 0,wij ≥ 0 ∀i ∈ F, j ∈ C

We study a randomized algorithm that rounds a solution to the primal with the help of a solution to
the dual. We first obtain an expected approximation ratio of (1 + 3/e) < 2.11, and then improve it to
(1 + 2/e) < 1.74.

• We solve the primal LP to get (x, y). We use some convenient notation:

lpF :=
∑
i∈F

fiyi ; lpC :=
∑
j∈C

∑
i∈F

xijd(i, j) ; Cj :=
∑
i∈F

d(i, j)xij for a client j ∈ C

so that lp = lpF + lpC and lpC =
∑

j∈C Cj . We also solve the dual to get (v, w). By complementary
slackness2, for any i ∈ F, j ∈ C, xij > 0 =⇒ vj − wij = d(i, j) =⇒ d(i, j) ≤ vj . That is, in
(x, y), each client j only uses facilities within distance vj of itself. We call this property v-closeness.

Remark: We can avoid solving the dual. We only need that (x, y) is v-close, and
∑

j∈C vj ≤ lp.
For this, it actually suffices to set, for each j ∈ C, vj := max {d(i, j) | xij > 0}.

• A deterministic start. We first describe a simple deterministic rounding from the v-close fractional
solution (x, y) to a 3v-close integral solution, i.e. S ⊆ F such that d(j, S) ≤ 3vj , ∀j ∈ C. This is a
“filtering” step, where we find a subset D ⊆ C of clients that are far from each other. To do this, we
pick the client j0 with minimum vj0 into D, and put any clients that share facilities with j0 into the
child set of j0, called Chldj0 , which we then discard. We repeat this until we run out of clients. To
complete the algorithm, we open the cheapest facility in each N(j0) : j0 ∈ D.

1Project report by Ankita Sarkar based on [1]. Last modified : March 10, 2022
If you find errors or have comments, please email ankita.cs.gr@dartmouth.edu.

2Assuming the reader knows this terminology from the course’s lecture notes.
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1: procedure FILTERING FOR UFL(F ∪ C, {fi}i∈F , (x, y)):
2: U ← C, D ← ∅ . U is the set of clients for which we have not decided
3: ∀j ∈ C,N(j)← {i ∈ F | xij > 0}
4: while U 6= ∅ do
5: Pick j0 ∈ U with minimum vj0
6: D ← D + j0
7: Chldj0 ← {j ∈ C | N(j) ∩N(j0) 6= ∅}
8: U ← U \ Chldj0
9: return D

10: For D constructed above, S ←
{
i0 = argmini∈N(j0) fi | j0 ∈ D

}
11: return S

Analysis. Consider a client j ∈ Chldj0 , j0 ∈ D. Let i0 be the cheapest facility in N(j0). Then

d(j, S) ≤ d(j, i0) ≤ d(j, j0) + d(j0, i0) ≤ d(j, i) + d(i, j0) + d(j0, i0)

for some i ∈ N(j)∩N(j0). By v-closeness of (x, y), d(j, i) ≤ vj , and d(i, j0), d(j0, i0) ≤ vj0 . Also
by the filtering algorithm, since j ∈ Chldj0 , vj0 ≤ vj . So d(j, S) ≤ 3vj . We can show that we already
have a 4-approximation.

Exercise: Show that
∑

i∈S fi ≤ lpF , and hence conclude that costF (S) + costC(S) ≤ 4lp.

When we randomize, we use this 4-approximation as our worst-case “backup”. That is, in most cases,
we get Exp[d(j, S)] ≤ Cj but, in a few bad cases, we rely on the deterministic bound d(j, S) ≤ 3vj .

• Randomization. Our randomized algorithm starts with the filtering process and obtains D. But instead
of opening the cheapest facility in each N(j0) : j0 ∈ D, we open one i0 in each N(j0) with probability
proportional to xij0 . We also consider facilities outside all N(j0)’s, i.e. R := F \ ∪j0∈DN(j0). We
independently open each i ∈ R with probability yi.

1: procedure RANDOMIZED ROUNDING FOR UFL(D ⊆ C from filtering, and (x, y)):
2: S ← ∅
3: for j0 ∈ D do
4: Pick one i0 ∈ N(j0) as per distribution (xij0)i∈N(j0)

.
∑

i∈F xij0 = 1

5: S ← S + i0
6: for i ∈ R do
7: With probability yi, S ← S + i

8: return S

Analysis of Randomized Rounding. For facility costs,

Exp[costF (S)] ≤
∑
j0∈D

Exp[fi0 ] +
∑
i∈R

fiPr[i ∈ S] =
∑
j0∈D

∑
i∈N(j0)

fixij0 +
∑
i∈R

fiyi ≤ lpF (1)
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To analyze the connection costs, fix a client j such that j ∈ Chldj0 , j0 ∈ D. Our algorithm always
opens some i0 ∈ N(j0), so by the same argument as the deterministic algorithm, d(j, S) is at most
3vj . However, we hope that some facility in N(j) is also open, allowing us to bound d(j, S) by vj
instead.

Using the pairwise disjointness of the sets {N(`)}`∈D ∪ {R}, we partition N(j) into sets
{S` := N(j) ∩N`}`∈D ∪ {Rj := N(j) ∩R}. For ` ∈ D, E` be the event that we open some facility
in S`, and p` := Pr[E`] =

∑
i∈S`

xi`. Also, for each i ∈ Rj , Ei be the event that i is open, and
pi := Pr[Ei] = yi. Observe that all the events {E`}`∈D ∪ {Ei}i∈Rj

are pairwise independent. Let
Bj be the bad event that none of these events occur. Dropping the subscript for a fixed j,

Pr[B] =

(∏
`∈D

(1− p`)

)∏
i∈Rj

(1− pi)

 ≤ e
−
(∑

`∈D p`+
∑

i∈Rj
pi

)
(2)

For ease of analysis, we make the following “completeness” assumption: ∀j ∈ C, i ∈ N(j), xij = yi,
i.e. clients use fractional facilities either as much as possible or not at all. This assumption can be
made true by creating an equivalent instance where it holds.

Exercise: Given an LP solution (x, y) on the instance I, give a polynomial time algorithm to con-
struct a new instance I ′ and an LP solution (x′, y′) on I ′ so that costI(x, y) = costI′(x

′, y′),
and the latter is complete; and also if (x, y) is v-close then so is (x′, y′).

Under this assumption, for ` ∈ D, i ∈ S`, xi` = yi = xij ; and for i ∈ Rj , yi = xij . So we get∑
`∈D

p` +
∑
i∈Rj

pi =
∑
`∈D

∑
i∈S`

xi` +
∑
i∈Rj

yi =
∑

i∈N(j)

xij = 1

So (2) gives Pr[B] ≤ 1/e. Appealing to the backup cost when B occurs, we get

Exp[d(j, S)] ≤
∑
`∈D

Exp[d(j, S`) | E`]p` +
∑
i∈Rj

Exp[d(j, i) | Ei]pi + 3vj/e (3)

For ` ∈ D, conditioned on E` occurring, i ∈ S` is open with probability xi`/p`. So the first term
above becomes

∑
`∈D

Exp[d(j, S`) | E`]p` =
∑
`∈D

∑
i∈S`

d(j, i)xi`/p`

 p` =
∑
`∈D

∑
i∈S`

xijd(j, i)

where the last step is by our completeness assumption. Also, for i ∈ Rj , Exp[d(j, i) | Ei] ≤ d(j, i)
and pi = yi = xij . So the RHS in (3) becomes at most∑

`∈D

∑
i∈S`

d(j, i)xij +
∑
i∈Rj

d(j, i)xij + 3vj/e ≤
∑

i∈N(j)

d(j, i)xij + 3vj/e = Cj + 3vj/e

by definition of N(j). So summing over all j ∈ C,

Exp[costC(S)] ≤
∑
j∈C

Cj + (3/e)
∑
j∈C

vj = lpC + 3lp/e (4)

Adding facility costs from (1), Exp[costF (S) + costC(S)] ≤ lpF + lpC + 3lp/e = (1 + 3/e)lp.
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• In fact, one can do a little better. We can write, for a j ∈ C, Exp[d(j, S)] ≤
Exp[d(j, S) | Bj ](1−1/e)+Exp[d(j, S) | Bj ]/e. So, intuitively, the lpC term in (4) should be safe
to multiply by (1− 1/e). To formalize this, we would need to show

Claim 1. ∀j ∈ C,Exp[d(j, S) | Bj ] ≤ Cj

This is not trivial to prove but, since it is intuitively believable, we believe it for the purpose of this
note. Let us rewrite (4) accordingly.

Exp[costS(C)] ≤ (1− 1/e)lpC +
∑
j∈C

Exp[d(j, S) | Bj ]/e ≤ (1 + 3/e)lp− lpC/e (4’)

We now pursue better bounds for Exp[d(j, S) | Bj ] and use them with (4’).

Exercise: Prove Claim 1, or read and understand its proof from [1].

Improved Filtering. Notice that our bounds on Exp[d(j, S) | Bj ] and Exp[costF (S)] are ensured
by the randomized rounding, as long as {N(`)}`∈D is pairwise disjoint. Contrarily, the bounds on
Exp[d(j, S) | Bj ] depend on the construction of D itself. So we alter our filtering procedure to get a
new D that still has the above disjointness, but also gives better bounds on Exp[d(j, S) | Bj ].

Observe that a j0 ∈ D never relies on the backup of 3vj0 ; rather, because the randomized rounding
opens some i0 ∈ N(j0) with probability xij0 , Exp[d(j0, S)] = Cj0 , which could be much smaller
than vj0 . Connection costs of the form Cj0 : j0 ∈ D appear many times in our bounds; so perhaps we
should pick vertices into D by minimum Cj’s, rather than by minimum vj’s? But, we do not want to
abandon the benefits of v-closeness. So we strike a natural compromise: we pick vertices into D by
minimum vj + Cj . That is, we replace Line 5 of the filtering algorithm with the following:

Pick j0 ∈ U with minimum vj0 + Cj0

Analysis with Improved Filtering. Our proof relies on the key lemma

Lemma 1. For any j ∈ C, Exp[d(j, S) | Bj ] ≤ 2vj + Cj .

By the lemma,
∑

j∈C Exp[d(j, S) | Bj ] ≤
∑

j∈C(2vj + Cj) = 2lp + lpC . So from (4’) and (1),
Exp[costF (S) + costC(S)] ≤ lpF + (1− 1/e)lpC + (2lp+ lpC)/e = (1 + 2/e)lp.

Proof of Lemma 1. Fix j ∈ Chldj0 , j0 ∈ D. Drop the subscript from Bj . By the improved filtering,
vj0 +Cj0 ≤ vj +Cj . Also let i0 be the facility in N(j0) that is opened during randomized rounding.
Since j ∈ Chldj0 ,N(j) ∩N(j0) 6= ∅, so for some i ∈ N(j) ∩N(j0), d(j, S) ≤ d(j, i0) ≤
d(j, i)+ d(i, j0)+ d(j0, i0). Since our target quantity is 2vj +Cj , we want to use v-closeness on two
of these terms, and bound the remaining term using some connection cost. We proceed via two cases.

Case 1. This is the case where ∃i ∈ N(j) ∩ N(j), d(i, j0) ≤ Cj0 . Choosing this i and using
v-closeness, d(j, i) + d(i, j0) + d(j0, i0) ≤ vj + (Cj0 + vj0) ≤ vj + (Cj + vj) = 2vj + Cj .

Case 2. This is the case where ∀i ∈ N(j) ∩N(j0), d(i, j) > Cj0 . In this case, we show that
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Exp[d(j0, i0) | B] ≤ Cj0 (5)

which gives, by linearity of expectation,

Exp[d(j, i) + d(i, j0) + d(j0, i0)] ≤ vj + (vj0 + Cj0) ≤ 2vj + Cj

We now prove (5). We know that Exp[d(j0, i0)] = Cj0 . We are in the case where all facilities in
N(j) ∩ N(j0) are farther away from j than this unconditioned expected cost. So conditioned on B
i.e. when they are all closed, the expected cost should not get worse. Formalizing this:

Cj0 = Exp[d(j0, i0)] =
∑

i∈N(j0)

d(i, j0)xij0

>(Case 2) Cj0

∑
i∈N(j0)∩N(j)

xij0︸ ︷︷ ︸
=:p

+ (1− p)
∑

i∈N(j0)\N(j)

d(i, j0)xij0/(1− p)

= Cj0p + (1− p)
∑

i∈N(j0)\N(j)

d(i, j0)Pr[i0 = i | N(j) ∩ S = ∅]

= Cj0p+ (1− p)Exp[d(j0, i0) | B]

Rearranging, we get

(1− p)Cj0 > (1− p)Exp[d(j0, i0) | B] =⇒ Exp[d(j0, i0) | B] ≤ Cj0

Ponder This: What happens if we filter by picking clients with minimum Cj?

Notes

This algorithm appears in the paper [1] by Chudak and Shmoys. The initial deterministic idea, that
yields a 4-approximation, earlier appeared in a paper [2] by Shmoys, Tardos, and Aardal, and this is
detailed in lecture note 5 of the course. [2] also used a different randomization to improve the 4 to
3.16, and gave a simple derandomization for it.
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